

Quantifying Soybean Yield Loss from Satellite-Constrained Ozone Exposure Assessment

Daniel Tong^{1,2}, Julianna Christopoulos^{3,4}, Siqi Ma^{1,2}, and Patrick C. Campbell^{1,5}

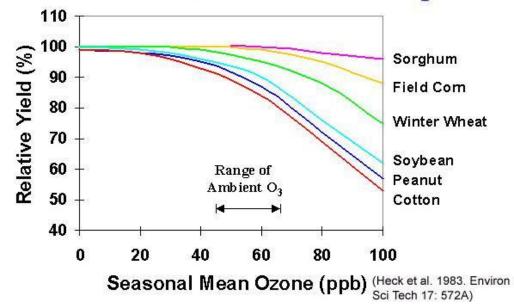
- 1. Center for Satellite and Earth System Research, George Mason University, Fairfax, VA
- 2. Department of Atmospheric, Oceanic and Earth Sciences, George Mason University, Fairfax, VA
- 3. College of Agriculture and Life Sciences, Cornell University, Ithaca, NY
- 4. National Oceanic and Atmospheric Administration Climate Program Office, Silver Spring, MD
- 5. National Oceanic and Atmospheric Administration Air Resources Laboratory, College Park, MD

Acknowledgment: This research was supported by the William M. Lapenta Internship Program and the National Oceanic and Atmospheric Administration Climate Program Office.

OZONE'S IMPACT ON PLANT GROWTH

- O₃ enters plant leaves through the stomata.
- In plant tissue, O_3 reacts to form toxic byproducts which:
 - Reduces photosynthesis
 - Produces detoxification systems
- Visible symptoms include flecking, stippling, bronzing, and reddening.

Open-Top Chamber used to study ozone impact on plants


IMPORTANCE OF SOYBEANS & CROP EXPOSURE EFFECTS

U.S. is the world's leading soybean producer and second-leading exporter

Soybeans makeup 90% of U.S. oilseed production

Soybeans are among the most sensitive crops to O_3 exposures

Effect of O₃ on Yield of Crops

3

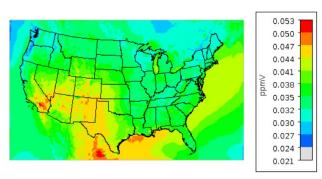
EMISSION CHANGES CAUSED BY COVID-19

 O₃ changes derived from the differences between two scenarios: the business-as-usual (BAU) case and the COVID-19 (C19) case.

BAU Scenario:

 Emission data from National Emission Inventory 2014 version 2 (NEIv2) projected onto "would-be" 2020 level.

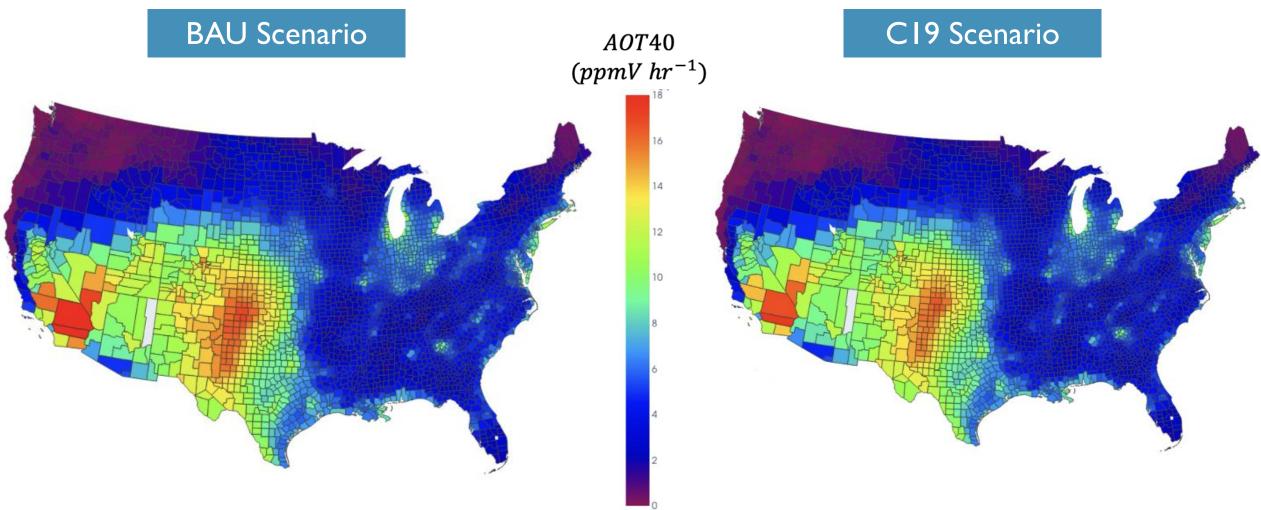
C19 Scenario:


- Fused observed NO₂ trends using OMI NO2 and EPA monitors from 2014 to 2020 represent the actual emission level under pandemic conditions (Tong et al., 2016)
- Emission data after adjustment are used to drive the CMAQ air quality model to calculate the ground-level O₃ levels under each scenario (Campbell et al., 2021)

BAU Scenario

May-June 2020 Min = 0.020, Max = 0.053

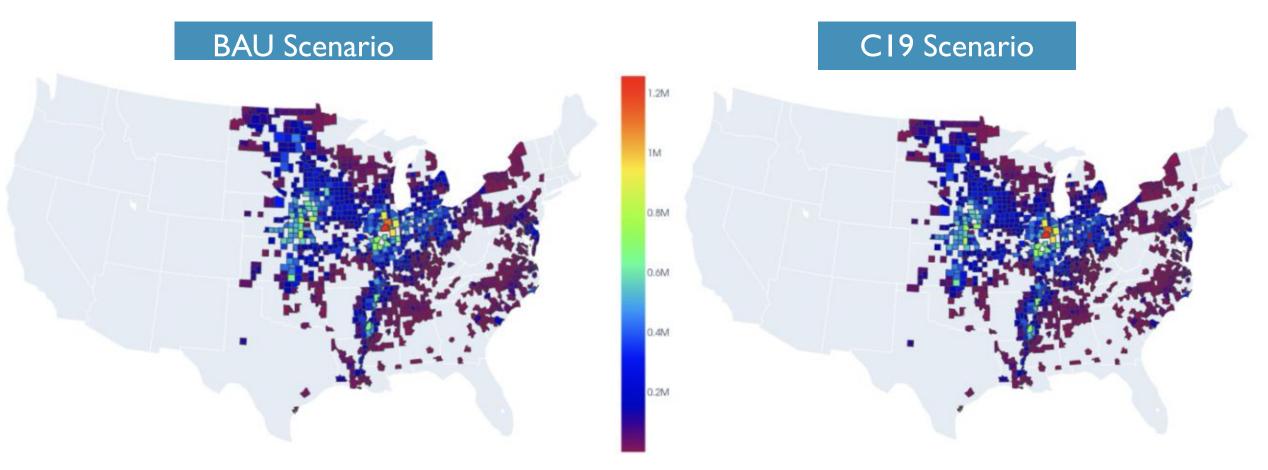
C19 Scenario


May-June 2020 Min = 0.021, Max = 0.053

EXAMINATION OF SOYBEAN CROP EXPOSURE TO OZONE

$$AOT40(ppmV\ hr^{-1}) = \sum_{i=1}^{n} [C_{O_3} - 0.04]_i \ for \ C_{O_3} \ge 0.04ppm$$

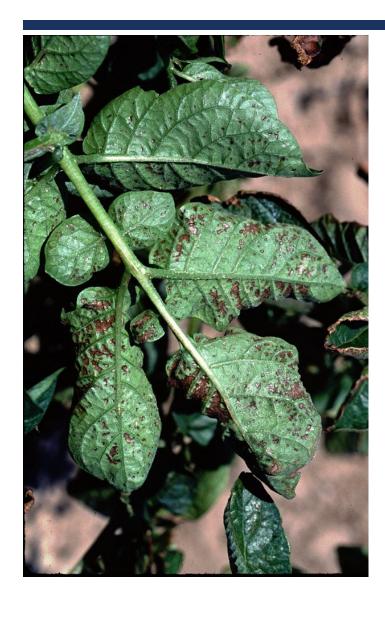
- Calculated using cumulative exposure index AOT40 (Tong et al., 2007):
 - Utilize previously derived hourly O₃ concentrations
 - Accumulated over three-month period (May-July 2020)
 - Grid-based indices are converted into county-level averages


COUNTY-LEVEL OZONE EXPOSURES

ACTUAL YIELD LOSS

Relative yield loss (RYL) due to O_3 exposure: $RYL\left(ppmvhr^{-1}\right) = a \times AOT40$

Constant a = 0.0113 is determined from Dingenen et al. (2009)


SUMMARY OF YIELD LOSS CHANGES & PRODUCTION EFFECTS

Yield Loss Changes

	BAU	C19
Total Yield Loss	164.5	165.1 Million
(Bushels)	Million	
U.S. Soybean Yield	5.87	5.89
Loss (%)		
Difference in Losses	-	0.02
(%)		

Production Effects

U.S. Soybean Price	\$9.01
Per Bushel (as of	
August 21 st , 2020)	
BAU Production Loss	\$1,482.2M
C19 Production Loss	\$1,486.9M
Production loss from COVID-19	\$4.7M

CONCLUSIONS

Satellite constrained air quality forecasts to assess crop yield loss

Crop Exposure Changes during COVID-19

- Highest exposures in Southwest U.S.
- Increases in exposures under COVID-19 in Mississippi River Valley and southeast U.S.; Decreases in Midwest

Yield Loss and Production Effects:

- US soybean yield losses from O₃ exposure: \$1.5B USD/yr
- Minimal yield loss from COVID-19: ~ \$4 million USD

Reference

- Tong, D., et al., (2007). *Atmospheric Environment*, 41(38), 8772-8784.
- Tong, D. et al., (2016). *Geophysical Research Letters*, 43(17), 9280-9288
- Campbell et al., (2021). Atmospheric Environment 264, 118713.
- Christopoulos, Julianna, et al. (2023): Scientific Reports 13.1: 12574.

9