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1 Introduction 
 
The purpose of this document is to clearly define the image processing steps to be performed at Level 3 on the 
coronagraph images ingested at SWPC from the CCOR-1 and CCOR-2 coronagraphs onboard the GOES-U and 
SWFO-L1 spacecraft respectively. 

Software developed by the CCOR vendor Naval Research Laboratory (NRL), and implemented for operations by the 
SWPC SWFO-L1 dev team, will produce images in the uncompressed FITS image format at levels L0a through L2. 

The pipeline steps up to Level2 for the CCOR1 instrument are: 
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1. L0 CCSDS frames 
2. L0b - Unpacked CCSDS frames and images rotated so that Solar North is at the top - FITS format 
3. L1a - image as Digital Number (DN), bias and defects removed, divide by exposure time - FITS format 
4. L1b - stray and scattered light removed - FITS format 
5. L2 - fully calibrated - FITS format 

The pipeline steps for CCOR2 are slightly different: 

1. L0 CCSDS frames 
2. L0b - Unpacked CCSDS frames and images rotated so that Solar North is at the top - FITS format 
3. L1a - image as Digital Number (DN), bias and defects removed, divide by exposure time - FITS format 
4. L2 - fully calibrated, F-corona subtracted, flat-filed vignetting, distortion correction applied  - FITS format 

 

CCOR image files at all levels up to Level 2 have an image pixel size of 2048 (width) by 1920 (height). Files at level 
0a and 0b are of size 8MB while those of level 1 and 2 are 16MB. New coronagraph files will nominally be produced 
every 15 minutes (i.e., cadence = 15 minutes). 

It is assumed that CCOR FITS files at Level 2, as processed by algorithms provided by the vendor, will be somewhat 
‘finished’ in the sense of having the most important processes applied to produce the best images of structures within 
the Solar Corona. Chief among these processes will be ‘background subtraction’ which is specifically a 
vendor-defined process for images being processed from Level 1 to Level 2. 

Processing at Level3 will entail reducing the files to half size and saving them in a .jpeg format. 

  

2 Algorithm Description 
 

2.1 Reduction of images to half-size and saving in .jpeg format 
 

2.1.1 Algorithm Overview 

Images at the full pixel size of 2048 x 1920, whilst best for scientific analysis, are too large for more general use. 
Level 3 will rebin these images to half-size, 1024 by 960, utilizing a median rebin process. 

Downsampling images as part of the L3 processing helps improve computational efficiency because image and 
movie viewers can ingest the lower-resolution images directly.  Furthermore, it provides an opportunity to ensure that 
the downsampling is optimal and consistent across platforms. 
 
2.1.2 Processing Outline 
 
Median downsampling is straightforward to implement in python using the scikit-image image processing package1: 

 
where image is the 2048 x 1920 input image and result is the 1024 x 960 output image.  This example includes a 
further robustness check by using the nanmedian numpy function to exclude corrupted pixels that may be flagged 
with an IEEE Not a Number (NaN) value.  
At this stage, the images will also be saved as jpeg files, with a “high quality” (=90%) setting. 

1 https://scikit-image.org/  
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In keeping with previous generally disseminated coronagraph images, most notably SOHO LASCO C3, the general 
CCOR coronagraph images will be rendered with a blue-white colormap, referred to as ‘Blues_r’ in 
MatplotLib-Python, ie: 

import matplotlib as mpl 

cmap = mpl.colormaps['Blues'] 

and colortable 1 in IDL,  ie: 

Loadct, 1 

 

Using this blue-white colormap does not represent anything scientific but is utilized so that the images are instantly 
recognizable as outer-field coronagraph images, carrying on the tradition started with LASCO C3 images. 

The Level3 CCOR images will also feature the NOAA logo (top left), and the image time in the format of YYYYMMDD 
HH:MM (bottom left).  An example image, using an image from LASCO C3, is shown in Figure 1. 
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Figure 1: An example of a Level 3 CCOR image, featuring a blue-white colormap, date-time stamp and NOAA logo  

In addition to producing Level 3 images as jpeg files, Level 3 will also concatenate still images to produce movies 
showing evolving coronal structures, most notably CMEs. Movies in .mp4 format and a frame size of 1024 by 960 will 
be produced using the program ffmpeg: 

 

ffmpeg -r $framerate -pattern_type glob -i '*.jpeg' -vcodec libx264 -crf 18 -r 
$framerate -y output.mp4 
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Where $framerate is the desired movie frame rate in images per second and the above command will work on a 
folder of timestamped .jpeg files. The mp4 files to be generated will include: 

● last 1 day, 7 days, 27 days from the current time 
● last 1 day, 7 days, 27 days on UTC day boundaries 

 
 

3 Possible Future Work 

The CCOR images processed to Level 2 by algorithms provided by the vendor, NRL, are expected to be somewhat 
‘finished’ in terms of best imaging the Solar Corona and representing coronal structures such as CMEs.  Thus the 
only processing envisaged at Level3 will be the image reduction and saving as .jpeg as described above in Section 1.  

However, it is anticipated that once live images are being received, some additional image processing may be 
desirable as a SWPC Level 3 process to further enhance the imagery for general dissemination. Note: these 
additional processes, documented here in sections 2a, 2b, and 2c, are only possible additional processes, 
dependent upon the quality of the images as already produced at Level 2, and may not end up as part of the Level 3 
process at all.  

Possible anticipated additional processing components are: 

 
Removal of bright points 
Feature enhancement 
Noise reduction 

 
The L3 processing algorithm used in operations need not include all components. For example, applying a noise filter 
may not be necessary for operational L3 data, especially if a bright point filter has already been applied.   However, 
noise reduction can optionally be added if it is found that it improves the quality of movie loops produced during 
post-launch testing for both GOES-U and SWFO-L1.  Similarly, feature enhancement and noise reduction may be  
desirable when producing images and movies for press releases and other special events. 
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3.1 Removal of bright points with a median bright point filter 
 

A simple, robust, and effective bright point filter can be constructed to remove noise in the form of random bright 
pixels which are detrimental to the coronal structures in the image. The first step in this algorithm is to define a 
circular region around each pixel defined by a specified sampling radius, in pixels.   For example, if the sampling 
radius is chosen to be 10 pixels, then the sampling region around pixel (i, j) consists of all pixels (l, m) for which 

. The next step is to compute the median of all values within the sampling region for each (𝑙 − 𝑖)2 + (𝑚 − 𝑗)2 ≤ 10 
pixel.  If the value of pixel (i, j) is larger than the median in the sampling region multiplied by some user-defined 
threshold, then the pixel value is replaced by the median value.  An example processing of a STEREO COR2 image 
is shown in Fig. 2. 
 
The median filter can be implemented in python by leveraging the scikit-image package for specified values of 
threshold and radius: 

 
This algorithm assumes that the outliers are positive, which is appropriate for energetic particles that typically induce 
a high charge state in imaging sensors.  But, it may not be desirable for difference-images where positive outliers can 
be transformed into negative outliers through subtraction.  If needed, this can be addressed in a straightforward 
manner by replacing the image in the code segment above by its absolute value.  
 
 

 

Figure 2.  (a) L1 background-subtracted and downsampled image from STEREO-A at 22:54 UTC on Sept 20, 
2012.  (b) Median bright point filter applied to image from frame (a) with a threshold of 1.1 and a sampling radius of 
10 pixels  (scale 1 to 1.3). 
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3.2 Feature Enhancement by multiscale gaussian norm (MGN) 

 
After removing spurious bright points, the next step in L3 image processing is feature enhancement. The simplest 
type of feature enhancement is what is often referred to as a gamma correction. This uses a nonlinear (power law or 
logarithmic) color table to equalize brightness between low and high intensity features in the image. In the case of 
coronagraph images, this generally means making dimmer features more prominent so the image is not dominated 
by a few small bright features.  The SWPC_CAT tool already provides an interactive gamma correction, and the color 
tables typically used for coronagraph images are already nonlinear. 
 
The Multiscale Gaussian Norm (MGN) technique, developed by Morgan & Druckmüller (2014), can be thought of as 
an extended version of a gamma correction, with additional enhancement of coherent features on multiple scales.  
The algorithm begins by defining a symmetric 2D Gaussian kernel Gi with a width wi (expressed in pixels) in each of 
the two dimensions.  Then features of scale wi are extracted by convolving the image B with Gi, subtracting this 
smoothed image from the original image, and applying a local normalization based on the statistics of surrounding 
pixels: 

 𝐶
𝑖 

=  
𝐵 − 𝐵 ⊗ 𝐺

𝑖

σ
𝑖

 (1) 

where ⊗ denotes a convolution and σi 
2 is the local variance of the difference image, smoothed over scale wi by 

convolving it again with Gi: 

 σ
𝑖

=  [(𝐵 −  𝐵 ⊗ 𝐺
𝑖
)2] ⊗ 𝐺

𝑖
 (2) 

The output image is then given by a weighted sum over the different image components: 
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γ
 +  1−ℎ
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Here Cɣ is just the standard gamma correction: 

   𝐶
γ

= (
𝐵 − 𝑏

0

𝑏
1
 − 𝑏

0
)1/γ (4) 

where ɣ controls the degree of nonlinearity in the color/brightness table and b0 and b1 are minimum and maximum clip 
values that are used to define the range at which the color table saturates. 

The MGN image in eq. (5) reduces to a standard gamma correction when h = 1.  So, the parameter h is used to 
control how much emphasis to place on the Gaussian-filtered component relative to the more gamma correction. 

The second term in eq. (5) is a sum over Gaussian-filtered images obtained from eq. (3) using Gaussian kernels with 
n different widths, chosen by the user.  Each component is weighed by a user-specified coefficient gi.  The arctan 
transformation is applied so that the range of pixels is more precisely controlled by the weights gi, along with the 
scaling parameter k.  Large values of k (> 1) will tend to saturate the color/brightness table for each Gaussian-filtered 
image, increasing the contrast. 

The user-specified parameters for the MGN algorithm are summarized in Table 1.  Though optimal results can be 
obtained by tuning these parameters for particular images, robust default values must be specified for operational 
use. 

Table 1: Parameters for MGN Algorithm 

Parameter Description 
wi An array of length n specifying the widths of the different Gaussian kernels   
gi An array of length n specifying the weights for each of the Gaussian-filtered 

components: eq. (5) 
k Controls the saturation of the color/brightness table of the Gaussian-filtered 

components through the arctan transformation in eq. (5) 
ɣ The (inverse) exponent to use for the gamma correction: eq. (6) 
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b0, b1 The minimum and maximum clip values that control the scale in the gamma 
correction: eq. (6) 

h Controls the relative weighing of the gamma correction (dominant for h=1) to the 
Gaussian-filtered component (dominant for h=0): eq. (5) 

 
A python implementation of the MGN algorithm is freely available through the SunPy package (Barnes et al 2020; 
https://sunpy.org).  Example usage is: 

 
The sunkit_image package should not be confused with the skimage package we encountered above.  The former is 
a component of SunPy while the latter is the scikit-image python module, a general-purpose image processing 
package.  

The values of h = 0.8 and ɣ = 1.5 in the code segment above were found to give robustly good results for 
coronagraph images, along with the default SunPy mgn values for the other parameters.  This is demonstrated in Fig. 
3.   The default list of Gaussian widths, wi (pixels), is set to [1.25, 2.5, 5, 10, 20, 40] with the corresponding weights gi 
set to unity.  The default value for k is 0.7.  The clip values b0 and b1 default to the minimum and maximum values of 
the input image but here they have been set to 0 and 1, appropriate for normalized images.  Specifying these 
parameters through the gamma_min and gamma_max arguments to MGN helps to ensure consistent scaling across 
movie frames, 

 

Figure 3: (a) LASCO/C3 L0.5 data (background-subtracted and normalized with exposure time) from 4:06 UTC on 
April 4, 2012. (b) Image (a) after processing with median downsampling, a median bright-point filter, and MGN 
feature enhancement. 

 

3.3. Noise Removal 

 
Feature enhancement, as discussed above, brings out detail in the image, but can also amplify noise. This is 
particularly the case near the outer edge of the field of view, where the signal to noise ratio is relatively low.    An 
example is shown in Fig. 12 using L0.5 data from the LASCO C3 coronagraph.  Detector noise is most apparent in 
the lower portion of the processed image (12b) as a mottling of the brightness pattern. 
 
The noise in LASCO/C3 is more prominent than in STEREO/COR2 in part because of the wider field of view, 
extending out to 30R☉ compared with 15 R☉ for the latter.  As mentioned in Section 3.1.1, the brightness of coronal 
features decreases rapidly with distance from the Sun, making them more challenging to detect at larger radii.  When 
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algorithms such as MGN or FNRGF enhance the signal in these dim regions, they also enhance the noise.   The FOV 
for CCOR-1 (17 R☉) and CCOR-2 (22 R☉) lie in between those for STEREO/COR2 and LASCO/C3 so it is expected 
that feature enhancement for these instruments will have a similar effect.Noise removal is a broad area of image 
processing, encompassing a wide range of challenges and approaches and producing a rich volume of literature.  In 
section 2 we suggested a technique to remove spurious bright points which can be regarded as a form of noise.  
However, astronomical images are generally contaminated with other sources of noise, including Poisson 
components associated with photon counts and Gaussian noise associated with the electronics of the detector (such 
as readout noise in CCDs).   
 
Naive smoothing or spectral filters have a tendency to blur the image, which can obscure much of the detail we 
sought to highlight with the feature enhancement algorithm discussed in Section 3.  More sophisticated noise removal 
algorithms seek to isolate the noise component from the legitimate signal, attenuating the former while retaining even 
the high-frequency components of the latter.  In short, we wish to remove the noise while retaining the sharpness of 
the image. 
 
Noise in astronomical images contains both Poisson and Gaussian components, producing a broad power spectrum 
that is far from flat (white noise).   Sophisticated noise removal algorithms model this noise spectrum based either on 
known performance characteristics of the detector or on the statistical properties of one or more images.   If one can 
reliably model the noise spectrum, one can selectively remove it while retaining as much of the signal as possible, 
including the high-frequency components that give rise to fine structure. 
 
 
DeForest (2017) describes one such model, known as noise-gating.  As with other image and signal processing 
algorithms, noise-gating is a general technique that has been applied across diverse applications, most notably in 
audio recording.   DeForest adapted the technique to astronomical observations and demonstrated its promise as a 
noise filter for solar imagery. 
 
Noise-gating works best with a sequence of images over a given time interval. Temporal coherence can then be used 
to more effectively distinguish physical image features from noise.  In modeling the noise spectrum, DeForest makes 
a distinction between shot noise which depends on the image itself and background noise which is independent of 
the image.  An example of shot noise is the Poisson noise that arises from the counting of photons in a CCD detector.  
For large photon counts, this is approximately proportional to the square root of the image brightness, with Gaussian 
randomness:     

  𝑁
𝑠
(𝑥,  𝑦,  𝑡) ≈ α𝐺(𝑥, 𝑦, 𝑡) 𝐵

0
(𝑥, 𝑦, 𝑡) (5) 

Here x and y are spatial position on the image, t is time, G(x, y, t) is a Gaussian distribution, and B0 is the “ideal” 
noise-free data.  The coefficient 𝛂 , as well as G, reflects the properties of the detector.   
 
Estimation of the noise spectrum from the data begins by organizing the data into a 3D data cube of dimensions Nt ⨉ 
Nx ⨉ Ny.  Here Nx and Ny represent the dimensions of each image and Nt is the number of images in the sequence.    
This data cube is then divided into subcubes, or samples, each of size nt ⨉ nx ⨉ ny. 
 
Under the assumption that the zero-frequency component dominates the Fourier transform of √B0, the spot noise 
spectrum can then be approximated as: 

  𝑁
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where  

 . β
𝑖
 =    

𝑥,𝑦,𝑡
∑ 𝐵(𝑥, 𝑦, 𝑡)  (7) 

The subscript i refers to a particular sample and the summation in eq. (18) proceeds over all pixels and images in a 
single sample.  The median and summation operations in eq. (17) are carried out across all samples.  Apodization is 
performed on each sample to mitigate spurious edge effects. 
 
Similarly, an image-independent background spectrum can be approximated as follows 

  𝑁
^

𝑏
 (𝑘

𝑥,
𝑘

𝑦
, ω) ≈   𝑚𝑒𝑑𝑖𝑎𝑛
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The assumption for both equations (17) and (19) is that a significant fraction–approximately half or more–of the 
Fourier space at the sampled scales is noise-dominated.   If that is not the case then the median operations can be 
replaced by a lower percentile. 
 
After an estimate for the noise spectrum is obtained, a filter is applied that either removes or attenuates Fourier 
components that have an amplitude less than a specified factor of the noise level. 
 
Deforest has implemented his noise-gate algorithm and made it available in an open-source repository2.    The code 
is written in cython; python with C extensions to improve numerical efficiency.   Once installed, a sample python 
invocation looks like the following: 

 
Here datacube is a 3D numpy array with dimensions (Nt, Nx, Ny), and the cubesize argument defines the dimensions 
of each sample (nt, nx, ny).   The model parameter is here set to hybrid, which includes both spot and background 
components.   The factor and dkfactor arguments set the filter thresholds for the spot and background components 
respectively.  This is the most appropriate option for unprocessed coronagraph images, though feature enhancement 
could complicate the estimation of a consistent Poisson noise spectrum.  The background-only component, selected 
by setting the model parameter to constant, may be more robust in this case, as addressed in Section 4.   Other 
options for model include spot and multiplicative. 

 

Figure 4. (a) Enhanced LASCO/C3 image from Fig. 3b.  (b) Image (a) subject to a hybrid noise-gate filter 
(DeForest 2017). 

Figure 4 shows how the noise-gate filter performs on the enhanced LASCO/C3 image from Fig. 3b and demonstrates 
how key features within the image, such as CMEs, are retained, while also clearly removing noise and cleaning the 
image. 
 
Since the noise-gate filter is applied in Fourier space, the output image sequence produced by noise_gate_batch is 
apodized in time to mitigate edge effects associated with the finite time series.    In practice, this means that Na 
images near the beginning and end of the sequence are darkened, where Na is ⅔ of the temporal cube size nt.  For 
example, Na = 12 for the value of nt = 18 used above.  The apodization function can be inverted, but this is at the 
expense of somewhat higher noise levels near the edges of the image sequence. 
 
A straightforward way to handle this apodization at the beginning of the image sequence is simply to include Na more 
images in the sequence and exclude them from the result.  However, this cannot be applied to the end of the 

2 https://github.com/drzowie/image-noise-gate  
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sequence for operational applications, where viewing the most recent image is essential.  A simple solution is to 
replicate the last Na images of the sequence and add them to the input data cube in reverse order. Then the last Na 
images can be excluded from the result.  With this approach, the output sequence ends with the most recent image.  
An example python implementation of this suitable for operational use is as follows:  

 
The noise-gate filter is the only part of the L3 processing pipeline that requires the processing of multiple images 
simultaneously.    This in itself should not pose problems for operational execution: the noise spectrum for the latest 
image can be approximated from previous images as described above.   Furthermore, the use of the median as a 
robust statistical measure in equations (6) and (8) makes the estimation of the noise spectrum insensitive to the 
potential presence of corrupted images.   
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