NOAA's Satellite Applications Symposium

AIR POLLUTION IMPACTS FROM WAREHOUSING IN THE UNITED **STATES UNCOVERED WITH SATELLITE** DATA

DEPARTMENT OF ENVIRONMENTAL & OCCUPATIONAL HEALTH GEORGE WASHINGTON UNIVERSITY

DR. SUSAN ANENBERG GEORGE WASHINGTON UNIVERSITY

MICHELLE MEYER INTERNATIONAL COUNCIL **ON CLEAN TRANSPORTATION**

JOSH MILLER INTERNATIONAL COUNCIL ON CLEAN TRANSPORTATION

DR. DAN GOLDBERG **GEORGE WASHINGTON** UNIVERSITY

Our previous work has suggested links between heavyduty vehicles, warehousing, and air pollution

• During the COVID-19 pandemic, nitrogen dioxide (NO₂) pollution was higher on I-95 compared with the Baltimore-Washington Parkway and surrounding a warehousing complex near Dulles International Airport.

Source: Dan Goldberg

Warehouses are omnipresent across the U.S.

 As of 2021, there were 149,075 warehouses
≥20,000 ft² in the contiguous
U.S. in the CoStar commercial real estate database.

• Nearly one-fifth of these warehouses are located in just ten (0.3%) counties, including Los Angeles County, CA; Harris County, TX, and Cook County, IL.

New warehouses built during the 2010s were larger and had a greater ability to handle traffic

Source: Kerr et al. (2024)

TROPOMI measurements are used to characterize NO₂ enhancements near warehouses

- (Left) We obtain daily TROPOMI NO₂ measurements and 100meter wind direction estimates near (±7km) each warehouse.
- (Right) NO₂ measurements are artificially rotated in the direction of the prevailing wind such that downwind is to the right of the figure
- Daily wind direction-rotated NO₂ measurements are averaged over all days with valid measurements in 2021.

TROPOMI measurements are used to characterize NO₂ enhancements near warehouses

- (Left) We obtain daily TROPOMI NO₂ measurements and 100meter wind direction estimates near (±7km) each warehouse.
- (Right) NO₂ measurements are artificially rotated in the direction of the prevailing wind such that downwind is to the right of the figure
- Daily wind direction-rotated NO₂ measurements are averaged over all days with valid measurements in 2021.

Satellite remote sensing from the **TROPOMI** instrument reveals a 20% increase in NO₂ near warehouses

• Increase is calculated as the relative difference between maximum NO₂ and NO₂ averaged over the upwind, orthogonal edge of the composite.

• Spatial displacement warehouse and peak NO_X likely stems from most NO_X (90-95%) being emitted as NO and thereafter oxidizing to form NO_2 .

Proxies for NO_X emissions are linked with increases in satellite-derived NO₂ near warehouses

• Clustering-the number of warehouses within a given census tract–exhibits the strongest association with NO_2 , explaining nearly 40% of the variance near warehouses sited in low population density environments.

Larger warehouse clusters and more loading docks are associated with increased truck traffic

1456 additional truck km traveled per additional warehouse

• Traffic impacts were estimated with a regression analysis using road segment-based traffic counts from the Federal Highway Administration.

• We also linked increases in near-warehouse truck traffic with significant increases in satellite-derived NO₂, consistent across different population density environments.

Communities with warehousing facilities have more residents identifying as ethnic and racial minorities

• In the top ten percent of tracts with the most warehouses, the proportion of the Hispanic population was 240% higher and the Asian population nearly 290% higher than U.S. median values.

Clustering decile

Strengthen engine standards

As has been done through the EPA's latest NO_X emissions and greenhouse gas standards

Strengthen engine standards

As has been done through the EPA's latest NO_X emissions and greenhouse gas standards

As has been done by the South Coast Air Quality Management District

Enact warehouse indirect source rules

Strengthen engine standards

As has been done through the EPA's latest NO_X emissions and greenhouse gas standards

As has been done by the South Coast Air Quality Management District

Enact warehouse indirect source rules

Phase out oldest, most polluting diesel vehicles or commit to fleet electrification

Summary

• Warehousing worsens local traffic-related air pollution with an average near-warehouse NO₂ enhancement of nearly 20%.

 Facilities with more loading docks and parking spaces-typical of warehouses built during the 2010s-attract the most truck traffic and are associated with the highest NO₂ levels.

 Solutions are within reach! More stringent engine standards, enactment of indirect source rules, and fleet electrification could reduce near-warehouse tailpipe emissions.

GAIGE KERR gaigekerr@gwu.edu

